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We develop a theory to describe the topographic control of planetary-scale flows 
resulting from the variation of the Earth’s rotation with latitude. We show that on 
passing over topography, an inertial, zonal current on an equatorial ,&plane may 
pass through a control a t  which the flow changes from a subcritical to a supercritical 
solution branch. Downstream of this control, a transition back to the subcritical 
solution branch may occur, for example, by the generation of planetary eddies or 
radiating Rossby waves. We calculate the energy dissipated across such a transition 
and discuss the relevance of this theory for a number of atmospheric and oceanic 
phenomena. We also show that this phenomenon is analogous to the hydraulic 
control of a non-rotating, stratified flow passing through a channel of variable width. 

1. Introduction 
There are many examples of eastward flowing zonal currents in the atmosphere, 

the ocean and on the planets, including the equatorial counter-current in the Pacific 
ocean (Cromwell, Montgomery & Stroup 1954), the zonal currents on the planets 
Jupiter, Saturn and Venus, and the atmospheric jetstream. These flows occur in 
relatively thin shells, and many useful insights have been gained by approximating 
the motion as occurring on a barotropic P-plane (Pedlosky 1987; Gill 1982; Armi 
1989). In  many cases the dominant dynamical balance is between inertia and the 
variation of the Coriolis force with latitude (the p-effect). Therefore, we focus 
attention upon inviscid, inertial, barotropic flows on a p-plane. In  order to study 
some of the underlying dynamical features of such flows, we have adopted some 
techniques from the theory of stratified hydraulics (Benjamin 1981). 

Rossby (1949) initiated the hydraulic theory of planetary-scale flows by showing 
that for certain values of the energy flux there may be two possible current widths, 
if one assumes the structure of a zonal flow. Armi (1989) developed this work, arguing 
that if the along-current pressure field changes, it  is possible that a subsonic current 
may pass through a control point and become supersonic. However, in both the 
original theory of Rossby (1949) and that of Armi (1989) the shape of the current was 
assumed rather than deduced from the equations of motion ; also, their theories did 
not include a mechanism, such as topography, by which the current may evolve from 
one state to the other. These studies were motivated by an analogy with the 
hydraulics of a non-rotating barotropic fluid; however, motion on a /%plane is in fact 
analogous to a special class of stratified flows (Ball 1954). 

In  this paper, we calculate some exact inertial solutions which describe the motion 
of zonal currents on an equatorial P-plane flowing over topography. We construct 
these solutions by assuming that the velocity profile upstream and downstream of 
the topography is the same but we allow the flow downstream to be of a different 
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width and intensity, This technique for calculating steady, nonlinear zonal flows on 
an inertial P-plane is equivalent to that introduced by Benjamin (1981) in the 
context of non-rotating, stratified channel flow. Using our solutions, we demonstrate 
how a zonal current may be controlled by variations in bottom topography; as the 
flow passes over the topography, the flow may change solution branch, being 
subcritical upstream and supercritical downstream of the topography. Although the 
two solutions have the same shape, the slow subcritical flow spans a wide latitude, 
while the fast supercritical flow downstream is much ' narrower '. Downstream of the 
topography, the supercritical flow may subsequently pass through a transition back 
to the subcritical solution. This transition, which corresponds to a widening of the 
current, may be manifested by eddies or the radiation of planetary waves; we 
calculate the energy dissipated in this transition. In the usual context of hydraulics 
in a stratified flow, the terms subcritical and supercritical generally refer to the speed 
of the current relative to that of internal gravity waves. By direct analogy, in the 
present context the criticality is in relation to long Rossby waves. 

We also show that at  midlatitudes, for a given current transport upstream of the 
topography, there are two possible current widths downstream of the topography ; 
however, in this case, the Coriolis force produced by the background rotation results 
in a different self-similar velocity profile for each solution branch. Variations in the 
coastline latitude may also induce multiple flow solutions. We show that for certain 
transports of the zonal, planetary-scale flow there are two families of solutions in 
which the flow upstream and downstream of a change in boundary latitude have the 
same velocity profile ; these solutions are similar to the two classes of solutions which 
describe midlatitude zonal flows. I n  $6, we briefly discuss the relevance of this 
phenomenon in the interpretation of planetary-scale flows. 

Our fully nonlinear solutions are quite different from those of Charney & DeVore 
(1979) and Hart (1979), who found multiple solutions in the problem of forced zonal 
flow over shallow ridges. Also, the present work differs fundamentally from the 
studies of Sambuco & Whitehead (1976), Gill (1977) and Dalziel (1990) in which the 
hydraulics of currents on an f-plane were examined. Their theories were an extension 
of the theory of non-rotating hydraulics through the inclusion of an extra pressure 
force due to the rotation. We do not include any gravitational forces; all the 
dynamics that we discuss emerge from the variation of the Coriolis acceleration with 
latitude which has an effect analogous to the gravitational force acting on a non- 
rotating stratified fluid. The present work also differs from that of Luyten & Stommel 
(1985) and Ou & DeReuter (1987) who considered the effects of baroclinicity as well 
as the ,&effect. We model the upper and lower boundaries of the zonal flow as rigid, 
with the depth of the flow affecting only the conservation of mass. 

In  the Appendix we show that the zonal flows described by our hydraulic theory 
are analogous to a subclass of stratified channel flows in which the density is a linear 
function of the streamfunction. The presence of a north-south oriented ridge on a P- 
plane is equivalent to a constriction which decreases the width of the channel, while 
a variation in the latitude of the coastline is equivalent to a change in the depth of 
the channel. This analogy between stratified and rotating flow is different from the 
classical analogy described by Veronis (1970) in which the background rotation was 
assumed to be constant ; we consider two-dimensional zonal flows on a /3-plane and 
compare them with two-dimensional, horizontal flows of a stratified current. 
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2. The zonal current 
2.1. Conserved quantities 

We consider zonal, inviscid motions on a barotropic /3-plane. The steady, two- 
dimensional equations of motion on a barotropic P-plane may be written as 
(Pedlosky 1987; Gill 1982) 

uu,+wu,-(fo+py)v = -P, (2.1 a )  

and uv,+vv,+(fo+py)u = -P,, (2.1 b )  

where P is the sum of the pressure field and any external, conservative forces,f, is the 
background rotation; we have assumed that the fixed fluid density on the barotropic 
,&plane is unity for simplicity of notation. Conservation of mass allows the 
introduction of a transport streamfunction II. where 

H ( x )  [u, vl = [ - +.21' lccZl> (2.2) 

and H ( x )  is the depth of the fluid (in this paper we assume the depth varies only in 
the zonal direction, for simplicity). The notation [a ,  b]  represents a vector in the (x, 
y)-plane. Equations (2 . la ,b )  may be added to give 

( U . V ) U - f ~ V $  = -VP .  
H 

Since (u-Vk) = 0, by taking the vector product of u with (2.3), we deduce that the 
quantity +u2 + P is conserved following the flow, and this is the P-plane version of the 
Bernoulli constant, as noted by Ball (1954). Equation (2.3) suggests that in a region 
of constant depth, the Coriolis force remlting from the mean rotation of the flow, f,,, 
contributes the quantity -fo @/H to the pressure field. By including this term in the 
pressure field, Sambuco & Whitehead (1976) and Gill (1977) developed hydraulic 
theories for the motion of fluid in a channel on an f-plane subject to both 
gravitational and rotational forces. In the present problem we have imposed a rigid 
lid on the /3-plane and therefore ignore the gravitational forces; the only effect of 
varying the topography is to change the speed and latitudinal span of the flow. 

The Bernoulli function may be used to derive a number of conserved quantities. 
First, if the zonal current varies continuously and smoothly, with no jumps or 
sudden transitions, then the energy flux, G, defined as 

is conserved with the flow, where HOG is the total transport. That the energy flux 
(2.4) is a constant follows by integrating the Bernoulli constant across streamlines. 

Secondly, we let A = (0, O,B), where B is the Bernoulli function, and note that 

V.(VxA) = o .  (2 .5)  

By evaluating V x A using (2.1) and substituting in the conservation of mass ( 2 . 2 ) ,  
one may re-express equation (2.5) in the form 
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FIGURE 1. The geometry of the zonal, planetary scale flow over topography. 

where w = v,-uy. This equation expresses the conservation of the potential 
vorticity (w +fo + ,8y)/H along streamlines. 

2.2. The boundary conditions 
We consider inertial currents propagating along a free-slip zonal boundary at  y = 0, 
for example a coastline or a mountain range which runs east-west (figure 1) .  We 
restrict attention to flows of finite width which lie in the region 0 < y < L ( x ) .  In a 
quiescent environment, the outer, free streamline of the current satisfies $,(L) = 0 
and since the total eastward transport in the flow is fixed, $(O) - $(L) = H ,  CP > 0. 
For convenience we choose +(O)  = 0. 

3. Topographic control on a /?-plane 
Using the constraints described in $2, we investigate the motion of such zonal flows 

as they travel through a region of variable depth ; in particular, we wish to determine 
whether the current can evolve smoothly from one velocity profile to another and 
thereby be hydraulically controlled by the region of variable depth. Since a uniform 
finite current will not satisfy the boundary conditions, one approach is to seek self- 
similar flow solutions, as is the practice in stratified channel hydraulics (Wood 1968; 
Benjamin 1981). We may derive such solutions using the conservation of potential 
vorticity along streamlines ; this is analogous to, but simpler than, using the 
conservation of Bernoulli function along streamlines, as is usually the practice in 
stratified hydraulics. 

We consider the bottom topography to be uniform with latitude but to vary in the 
zonal direction. The topography may be of arbitrary shape as long as it varies 
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sufficiently slowly with latitude that the flow is everywhere approximately parallel. 
We define the depth of fluid to  be H ( x )  = p ( x )  Ho,  where x is the zonal position, and 
H --f Ho as x + - co , as sketched in figure 1 .  

Far upstream of the topography, in the region of constant depth Ho,  we denote the 
streamfunction by Y(y). Therefore, if 61 represents the longitudinal distance between 
two streamlines, at  some zonal position x ,  through which the net transport is 8Y, 
then we may write 

(3 .1)  
giving the result that 

p ( ~ )  H ,  u ( x , ~ )  81 = - 6Y, 

ai - _  - -u,uH,-. aly 

aY aY 

Z(y;z) represents the latitude of the transport streamline Y ( y )  (which had latitude 
y far upstream) at the zonal position x .  

If the mass transport streamline @ has latitude y1 and y 2  at two different zonal 
locations x1 and x2 of depth p1 and p2, then the conservation of potential vorticity 
along streamlines, (2.6), may be written 

Pi  [ 1 C r y y ( X 1 , Y J  +PlHO(PYl +fo)l = rul[7/9yy(x2, Y2) +P2HO(PY2+fO)l ( 3 . 3 )  

assuming that ,u changes slowly with x .  If we set yz  = Ay,, p1 = 1 ,  pz = ,u and we seek 
a self-similar velocity profile, Y, defined such that 

Yu(Y) = @ ( X l ,  Y )  (3 .4)  

and 1Cr(.z,hY) = W Y ) ,  
then 

Combining (3.3)-(3.6) it follows that 

1 C r Y Y ( X l d )  = ~ 2 1 C r y , ( X , A Y )  = y / y ( Y ) .  

y y y  ( 1  - P A 2 )  = Ho h2P[PY(P - 4 +fo(lc - 1 )I* (3 .7)  

The similarity solution satisfying this equation and the boundary conditions is 

where L is the outer edge of the current at  the zonal position xl. In order that the 
total transport remains fixed with value H ,  0, we require 

To simplify this expression we introduce two dimensionless parameters. We define 
the variable 

Rs = 3@//3L3 (3.10) 

to be an approximate Rossby number for the upstream flow since @/L2 is a measure 
of the dynamic or relative vorticity in the current while PL is a scale for the change 
in the planetary vorticity across the flow. We also define the variable 

R, = 3fOl2PL (3.11)  

which is a measure of the background value of the Earth’s rotation in comparison 
with the variation of the Earth’s rotation across the current ; in planetary-scale flows 
on Earth this is typically in the range &lo, depending upon the latitude. 
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FIGURE 2. The dependence of the dimensionless current width h upon the dimensionless 
depth ,IL for R, = 0.1, 1.0 and 10 with R, = 0. 

Substituting in these definitions for R, and R,, we may now rewrite the cubic (3.9) 

pA3 - &( 1 + R,) +Rf(,u- l)]pA2 + R, = 0. (3.12) 

This cubic may now be used to relate the width, A ,  of the current downstream of the 
topography to that upstream if the velocity profile has the same shape and that the 
depth downstream is a fraction p of that upstream. If the depth of the fluid returns 
to  H ,  downstream of the topography, then the term representing the background 
rotation, R f ( p -  1) becomes zero; in this case, even though the velocity profile of the 
current changes as it flows over the topography, downstream of the topography, the 
width of the current, A,  is independent of the background rotation. 

for A in the form 

3.1. Equatorial zonal currents 

In  the particular case of an equatorial zonal current, in whichf, = 0, the self-similar 
velocity profile (3.8) applies at all points over the topographic bump, as well as at 
points far upstream and downstream of the topography. The solution of (3.12) gives 
the width of the current h(x) at each zonal location in terms of the depth p(x). 
Therefore (3.8) represents a self-similar flow a t  all positions over the topography; in 
this solution, even if the depth, and therefore width, of the current change, the 
velocity profile remains the same. 

We have plotted the roots of this cubic (3.12) in figure 2 for R, = 0.1, 1 and 10 and 
R - 0. The variable A, which represents the latitudinal span of the current relative f 7  to  its value upstream, has two real positive roots when 

4(1 +R,)3p4 > 27Rp. (3.13) 

These two solution branches converge when p = ,uc where 

4(1 +Rp)3p: = 27R8 (3.14) 

at which point h = A = 2  c 3P( 1 +Rp)* (3.15) 
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As ,u increases beyond the value p = ,uc one of the solutions Asup, representing the fast 
supercritical flow, approaches zero, while the other solution Asub, representing the 
slower subcritical flow, tends to the value (1 +RB)p. 

If the depth of the fluid a t  the topographic bump decreases to the critical value of 
,u = ,uc, where ,uc = (27Rp/4(l +RB)”;, then the flow may change smoothly from the 
subcritical solution branch, characterized by a slow wide flow to the supercritical 
solution branch, characterized by the faster, narrow flow (see figure 2). The flow 
solution which changes solution branch on passing over the topography is in fact the 
‘ choked flow ’ ; it is exactly analogous t o  the flow of a stratified fluid from a reservoir 
through a channel which initially contracts and subsequently expands into a second 
reservoir, as discussed by Benjamin (1981). If the topography is so large that ,u 
becomes smaller than ,uc, then the self-similar solution breaks down. 

If the flow propagates supercritically downstream of the hydraulic control point, 
and the fluid depth increases, the zonal current becomes increasingly narrower. At 
some point downstream, therefore, a transition in the current back t o  the wide 
subcritical flow may occur. Such a transition would result from nonlinear Rossby 
waves which can propagate westwards towards the topography from far downstream, 
in an analogous fashion to nonlinear gravity waves which propagate upstream to 
cause a hydraulic jump in classical hydraulics (Turner 1979). In $4, we estimate the 
energy lost across such a jump, and infer a possible scaling for planetary eddies. 

3.2. Non-equatorial zonal flows 

In  the general case R, ?= 0, solutions of the form (3.8) represent self-similar flows 
upstream and downstream of a topographic obstacle. However, although the flow 
upstream and downstream has the same velocity profile, as the flow passes over the 
topography, it has a different profile. This is because the potential vorticity, f J H ,  
associated with the background rotation f,,, changes as the depth H changes. In the 
case that the depth returns to its original value ,u = 1 downstream both the original 
profile and the self-similar solution branch downstream are the same as for an 
equatorial p-plane (53.1). 

It is interesting to note that the solution (3.8) also identifies that self-similar 
solutions exist upstream and downstream of a region of variable depth, even if the 
depth upstream and downstream are different. I n  figure 3, we have plotted the 
dependence of h upon ,u for R, = 0.1 and R, = 0.1, 1 and 10. This figure shows 
that the existence of multiple solutions for h for a given downstream depth, ,u, 
depends upon the latitude. The minimum value of p which yields two solution 
branches for the width of the flow downstream increases with Rf. However, there are 
always two solution branches in the neighbourhood of ,u = 1,  since when ,u = 1 the 
latitude of the current has no effect upon the width. An important difference between 
these solutions and those described for equatorial zonal flows is that now the velocity 
profile is different on each solution branch. If the flow lies on the narrow supercritical 
solution branch, then after passing over the topography, the self-similar current 
retains its velocity profile, but changes width according to  the part of the curve with 
negative slope in figure 3. If the flow is on the wider subcritical solution branch, then 
the self-similar current again retains its velocity profile after passing over the 
topography, but now the width changes according to the part of the curve with 
positive slope shown in figure 3. In each of these cases, the shape of the velocity 
profile is a function of the depth downstream of the topography. The two solution 
branches coincide when the depth ,u satisfies the relation 

4 , ~ ( ~ u (  1 +Rg) +R+- = 27Rp (3.16) 
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FIGURE 3. The dependence of the dimensionless current width A upon the dimensionless depth 
,u for R, = 0.1 and Bf = 0.1, 1 and 10. 

at which point 
h = $1.( 1 +Rp) + Rf(/% - l)]. (3.17) 

These flow profiles on a midlatitude /I-plane include a region of recirculation if 

(3.18) 

4. A simple model of planetary eddies 
We now discuss the evolution of the current downstream of the topography. We 

focus upon the self-similar equatorial flows of $ 3  as these are analytically tractable 
and therefore rather illuminating. 

If the flow changes smoothly from the subcritical to the supercritical solution 
branch on passing over the topography, then we may expect that a t  some point 
downstream of the flow, the flow may revert to the subcritical solution branch; this 
transition may be effected through the generation of planetary eddies or planetary 
waves. As the current adjusts back from the supercritical to the subcritical solution 
branch, the momentum and mass flux of the current is conserved ; however, energy 
is dissipated. Assuming for convenience that the current has the same profile (3.8) 
upstream and downstream of the jump, conservation of momentum flux enables us 
t o  calculate the final subcritical flow. We can then calculate the energy dissipation 
in this transition and use this to infer the strength and dissipation rate of eddies or 
planetary waves which effect the change in the solution branch of the current. 

The zonal momentum flux, M ,  is defined to be 

It follows from ( 2 . 1 ~ ~ )  and the continuity equation (2.2) that in a region of constant 
depth, the momentum flux is conserved, U / d x  = 0 because no forces act on the 
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flow. If the current adjusts from the supercritical to the subcritical solution branch 
in a region of constant depth downstream then we can use (4.1) to calculate the width 
of the subcritical flow, given the supercritical flow, assuming for simplicity that the 
flow retains the same velocity profile. 

We may integrate (2.lb) to derive an expression for the variation of pressure 
across the parallel zonal flow, 

Combining (3.2) for 'u with (4.1) and (4.2), it may be shown that 

where h represents the width of the current relative to its width upstream of the 
topography, ,u represents the ratio of the depth a t  the present location relative to 
that far upstream, and m is a constant which we can set to zero without loss of 
generality. 

Substituting in our calculated value for the shape of the current, as given by (3.8) 
with Rf = 0, we obtain the expression 

This represents the momentum flux at  some point beyond the topography where the 
relative depth is p and current width is A. In  figure 4, we have plotted M / M ,  as a 
function of h for p = 1 on an equatorial /%plane. Note that in this class of solutions, 
for each value of ,u the momentum flux associated with the current is bounded below, 
M 2 3.Mo/( 16R,y2)~, and this is attained when h = (2Rg/,u)a. It may be seen that if the 
flow downstream of the topography, described in 93, has width A which satisfies 
h < (2R,/p)i, then there is a second flow solution downstream, which has the same 
velocity profile, mass and momentum flux but which is wider. 

The energy flux is defined by 

(4.5) 

and using equations for the pressure, (4.2), and velocity, (3.2), expression (4.5) may 
be simplified to the form 

where c is a constant which we set to zero without loss of generality. Using the self- 
similar solution (3.8) this simplifies to 

(4.7) 

I n  figure 4, we have also plotted the variation of the energy flux, GIG,, as a function 
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p =  1 .  

of h with y = 1. One may deduce from (4.7) that  the energy flux associated with this 
class of flows is bounded below by E 2 3G,/(2Rpp2)f, and that the minimum is 
attained when A = (2Rp/y):. 

It may be seen from figure 4 that a t  a given depth and for a given momentum flux, 
the supercritical narrower current has a larger energy flux. Tndeed, the difference in 
the energy flux, AG, between the narrow current of width A, I, and the wider current 
of width h,L is given from (4.7) by 

Using (4.4) it may be shown that (4.8) is always positive when A, > A,. In  figure 5 we 
have plotted M/Mo as a function of G/G, for the parameters of figure 4, R, = 1 and 
p = 1 ; AC > 0 when the current jumps from the supercritical narrow solution branch 
to the subcritical wide solution branch and AG is typically of order 1. 

We have now established that downstream of the topography, if the current has 
width A < (2Rp/,!4)f, then there is a second wider flow solution with the same velocity 
profile and momentum flux but a lower energy flux. We therefore suggest that the 
narrower flow may become unstable and the flow solution may jump to the wider 
flow of lower energy. In  figure 5 ,  the arrow shows an example of a transition from the 
narrower solution branch (AsuD) to the wider solution branch (Asub) ; both flows have 
the same momentum flux and velocity profile, but the wider flow has a lower energy 
flux. This transition from a high energy state to a lower energy state is analogous to 
a hydraulic jump, and may arise due to nonlinear Rossby waves propagating 
westward in an analogous fashion to nonlinear gravity waves in a stratified flow ; the 
narrower flow upstream of the jump is supercritical and the wider flow downstream 
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FIGURE 5.  The variation of the energy flux with the momentum flux using the parameters of 
figure 4. 

is subcritical. We should mention that there is no reason why the flow downstream 
of the transition should be of the same shape as that upstream; however, these self- 
similar flows are analytically tractable and therefore provide a simple but powerful 
means of describing the phenomenon. 

If much of the energy is dissipated locally through the generation of intense eddies 
(or local transient waves), the present calculation allows us to estimate the order of 
magnitude of the dissipation rate. If we assume that the eddy has dynamic vorticity 
Q then i t  will dissipate energy at a rate vQ2, where v represents the viscosity. We may 
therefore write down the simple energy balance 

L2 H ,  Q’v N AG (4.9) 

and so the vorticity of the eddy scales approximately as 

(4.10) 

We may interpret the scaling (4.10) for the vorticity associated with the planetary 
eddies in a more general fashion. Depending upon the mechanism which produces the 
supercritical flow and the flow solution which obtains downstream, the numerical 
factor AG/G, will change. However, assuming that the hydraulic jump results from 
essentially inertial processes, the scaling (4.10) should be independent of the 
mechanism of generation of the eddies. 
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5. Flow passing across a coastline bump 
The method we introduced for calculating the flow across a region of topography 

in $3  can also be applied to the problem of flow along an east-west boundary of 
variable latitude, for example, as occurs in the circum-polar current (figure 6). I n  
this situation, we assume for simplicity that the depth of the fluid is fixed and so 
p = 1 ; it follows from the discussion of $3,  that  the effect of the background rotation, 
f,, is zero. If the current flows along a boundary whose latitude changes smoothly 
from y = 0 to y = b then the Bernoulli function and hence the potential vorticity are 
conserved on each streamline. We now derive a self-similar solution for the flow 
upstream and downstream of the bump. The problem is equivalent to the flow of a 
stratified fluid over a bump in a channel of fixed width, as first considered by Long 
(1955); however, a self-similar class of solutions to the stratified problem are not 
known to the author and, following the analogy in the Appendix, the results below 
may be modified for that context. 

We choose Y(y) to be the upstream streamfunction, and $ ( z )  be the downstream 
streamfunction, where z = A(y+h), and seek a similarity solution such that 

Using the notation of $ 3 ,  and applying the conservation of potential vorticity on 
streamlines yields the equation 

which is analogous to ( 3 . 7 ) .  Equation (5.2) has a solution of the form 

(5 .3 )  

where YJL) = 0 a n d B  = %/(I -A) .  I n  order that the total transport of the current 
is conserved, Y(L)  = -H,  a. Therefore, h must satisfy the cubic relationship 

h2(1 + R p - A ( l + 3 b / ( 2 L ) ) )  = R,, (5.4) 

where R, = 3@/(/3L3) is the Rossby number for the flow as defined in $3.  If h = 0 
downstream then the flows outside the region b =k 0 become identical to those of $ 3  
in which the depth returned to its original value downstream. The boundary 
perturbation may thus cause the flow to  change solution branch: two flows are 
possible downstream, the original flow and a narrower supercritical flow. 

If I + 3b /2L  > 0, then the cubic for A, (5.4), has two positive roots if 

4( I > 27R,( 1 + 3b/2L)' (5.5) 

corresponding to two different self-similar solution branches for the current. If 
b + 0 downstream then each solution branch has a different velocity profile ; on each 
solution branch, the flow upstream and downstream of the boundary perturbation 
have the same profile but different widths. The solution branches coincide when (5.5) 
becomes an equality. At this point, the current width downstream is given by 

2( 1 +R,) 
3( 1 + 3 b / 2 L )  

A =  
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Note that the extrema of the streamfunction upstream of the bump, (5.5), occur a t  
L and 2B-L. Therefore, if t L < B < L,  the solution includes a region of recirculation, 
while if B > L,  the flow is unidirectional. From (5.6) we note that B = L when 

b = 2(2R,- 1)/(5-422,) (5.7) 

6. Geophysical relevance 
The existence of multiple solutions of Iarge-scale zonal, planetary motions over 

topography has been a subject of significant interest in the atmospheric sciences. 
Two pioneering studies were those of Charney & DeVore (1979) and Hart (1979) who 
considered the problem of a barotropic, zonal flow over topography of relatively 
small amplitude, including a fractional forcing term. By using a truncated Fourier 
representation of the flow field (Charney & DeVore) and a small-amplitude expansion 
of the equations of motion (Hart) they discovered that multiple steady solutions may 
exist. I n  contrast, the inviscid solutions that we presented in $ 3  are unforced and are 
valid for topography of finite amplitude. 

Following the spirit of these studies, and the earlier work of Ball (1954) we suggest 
that  the present model may be useful in understanding some aspects of atmospheric 
flow over mountains, although we are ignoring the baroclinic component of the flow ; 
in particular Hart (1979) mentioned the role of the Rocky Mountains in controlling 
atmospheric winds. However, we mention that the jetstream is more complex than 
flows described by our inertial model, and so other processes may dominate the effect 
we are presently considering. The energy injected into eddies across the transition 
from the super- to subcritical flows downstream of the topography, as estimated in 
$4, may be useful in understanding the energy input to mixing in the stratosphere. 

Charney & Flier1 (1981) noted that the Kuroshio current, south ofJapan, exhibits 
bimodal behaviour and presented a simple barotropic model, arguing that the 
bimodality arose from variations in the latitude of the coastline. However, our new 
hydraulic theory may elucidate some aspects of the behaviour of model western 
boundary currents immediately following separation from the coast, where they 
appear to behave as inertial, eastward-propagating zonal currents. Although actual 
boundary currents have an important baroclinic ingredient to their dynamics, the 
transition from a relatively rapid and confined current, to a wider and somewhat 
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slower flow offshore may be a manifestation of the transition from supercritical to 
subcritical flow as discussed in §$3 and 5 ;  this interpretation is consistent with the 
generation of intense eddies just after boundary separation which are observed for 
example, beside the East Australian current (Boland & Church 1981) and in 
numerical simulations of the wind-driven ocean circulation (Bryan 1963 ; Pantaleev 
1985). 

Extension of the present theory to incorporate some of the crucial effects which 
result from the baroclinicity, including the surfacing of the lower layer and the 
interlayer gravitational coupling (Ou & DeReuter 1987; Stommel & Luyten 1987) is 
essential in order to apply the model to the Gulf Stream or the Agulhas current and 
this is presently under study. However, we mention here that the idea that 
topography exerts a strong control upon the path of the Gulf Stream was suggested 
some time ago (Warren 1963). 

7. Conclusions 
We have developed a control theory for eastward-propagating zonal currents on 

a P-plane flowing over topography which varies slowly with latitude. We have found 
two classes of solutions which have the same velocity profile upstream and 
downstream of a region of topography. In  one of these classes of solution, if the depth 
downstream differs from that upstream the current width increases downstream, and 
in the other class the current width decreases. I n  the special case of an equatorial p- 
plane both of the solution branches have the same velocity profile while, in general, 
a t  other latitudes each class of solution for the current has a different current profile. 
The narrow rapidly propagating flow is supercritical and the wider slow flow is 
subcritical. The topography can therefore cause the current to change continuously 
from being subcritical upstream to supercritical downstream. I n  the case of an 
equatorial flow we can therefore follow the current as it moves over the topography 
from the subcritical solution, through a control, and onto the supercritical solution. 
We calculate that the critical height of the topography, for a given flow rate, which 
is necessary to control the flow, is H,[27Rp/(4(1 +Bp)’)];. 

We show that on an equatorial P-plane, downstream of the topography, the 
supercritical narrow flow is of higher energy than the corresponding subcritical flow 
which has the same momentum flux. Therefore, we suggest that  a transition in the 
flow may occur downstream of the topography across which the flow returns to the 
subcritical solution branch with the same momentum flux, This transition may 
manifest itself as intense planetary eddies or planetary waves. We calculate the 
energy dissipated across such a transition and thereby purpose a simple scaling of the 
eddy strength, on an equatorial P-plane, assuming the dissipation is effected by 
intense planetary eddies. 

We have presented some further similarity solutions which describe the flow of a 
zonal boundary current along a coastline whose latitude changes slowly from one 
value upstream to a second value downstream. We show that again two families of 
self-similar solutions exist in this problem; these solutions are similar to those 
resulting at  midlatitudes from the variation of the topography with latitude. 

In the Appendix, we extend the analogy between stratified flow and motion on a 
P-plane, which was proposed by Ball (1954). We show that steady, inviscid motion 
on a ,&plane of fixed depth is identical to the class of steady horizontal stratified flows 
along a channel of fixed width in which the density is linearly related to the 
streamfunction. In  the special case of an equatorial P-plane, variations in the depth 
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of the P-plane flow correspond to variations in the width of the channel in the 
stratified flow problem. We have thereby shown that our theory is equivalent to that 
of Benjamin (1981), who considered the motion of a stratified flow in a channel with 
a constriction. Recognition of the exact analogy between zonal planetary-scale flows 
and non-rotating stratified channel flow clearly identifies some of the limitations 
associated with the simpler hydraulic control models proposed by Rossby (1949) and 
later by Armi (1989), which were based upon a similarity with the hydraulics of non- 
rotating homogenous channel flow. 

I started this work at the Scripps Institution of Oceanography funded by the 
Green Foundation of the Institute of Geophysics and Planetary Physics as a Green 
Scholar and the NSF. I have had useful discussion with Larry Armi, Glenn Ierley 
and Bill Young about this and related problems. 

Appendix. The analogy between zonal planetary-scale flow and stratified 
channel flow 

Ball (1954) showed that the vorticity equations for the /?-plane and for a stratified 
flow are very similar; he then deduced that under certain circumstances, the 
dynamics of the two systems are analogous. We extend and develop this result by 
showing that steady zonal flows on the P-plane are identical to a subclass of  flows of 
a stratified fluid in which the density varies linearly with streamfunction. 

The steady equations of motion of a non-diffusing, incompressible stratified fluid 
are 

p ( u . V ) u + g p ~  = -vl7 (A 1)  

and (u'.V)p = 0, (A 2 )  

where l7 is the fluid pressure and p(y)  the fluid density. Equation (A 1 )  may be 
rewritten as 

p(z4.V) u-gyvp = -V(1T+gyp). (A 3) 

Equation (A2) implies that p is constant along streamlines and so one class of 
solutions is 

v p  =F($) ( - - ,u ) .  (A 4) 

(A 5 )  

Therefore (A3) may be simplified to the form 

p(u.V)u-gyF($.)(--, u)  = -V(n+gYP). 

By taking the vector product of  u with (A 5) and combining this with (A 2), one may 
show that the quantity +pu2+17+gyp is conserved following the flow; this is the 
Bernoulli constant. In  a Boussinesq fluid, in which p = po fp ,  with po % p1 where po 
is a constant, (A5) reduces to 

(u.v)u-gyv;, = -v(l?+gy(l+;,)) (A 6) 

and the Bernoulli constant becomes +uz + d+ gy( 1 + bl) where = P/r,  and bl = 

PIIPO. 
A . l .  An equatorial /?-plane, fo  = 0 

Equation (A6) is very similar to (2.3). The equations are identical whenf, = 0 and 

Vb1 = Z(V, -?A), (A 7) 
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where h is a constant, so that (A6) becomes 

(u-V)u-gyh(v,  -u) = - V ( f i + g y ( l + j q ) .  (A 8) 

This result may be simply stated: 

I : the two-dimensional inviscid steady$ows on a barotropic, unforced, equatorial P-plane 
are identical to the steady, two-dimensionalJlows of a stratified, inviscid Boussinesq Jluid 
in which Vp = h(v ,  -u), where the pressure, P/po,  on the P-plane is equivalent to the 
sum of the prpssure, l7/p,, and the potential energy gyplp, in the stratified JEuid. 

In  regions of constant depth, if the density of the stratified fluid is linearly 
dependent upon the velocity streamfunction, then the streamlines of the flow in the 
stratified fluid are identical to those of the analogous flow on the P-plane. Through 
this analogy, we may associate a density with each streamline in a planetary-scale 
flow. 

A.2. Non-equatorial p-plane of constant depth 

I n  the different case of a non-equatoriFl P-plane of constant depth H we are able to 
introduce a velocity streamfunction $ = $ / H .  I n  a stratified fluid in a channel of 
constant width we can introduce a velocity streamfunction, 4, and it then follows 
from (A 6) that  p = G(q5) for some function of q5. If we set (cf. (A 7 ) )  

P = P,(l +A$) ,  

(u .  V) u - gyhVq5 = - V(U/p, + gy( 1 + A $ ) ) .  

(A 9) 

where h is a constant then we can rewrite the stratified flow equation (A 6) in the form 

(A 10) 

This is identical to the equation of motion on the P-plane (2.3) and yields our second 
identity, that 

II : the two-dimensional inviscid steady flows on a barotropic P-plane of constant depth, 
H ,  and with transport streamfunction $i are identical to the two-dimensional, steady Jlows 
of a stratified, inviscid Boussinesq fluid, with velocity streamfunction $ in a channel of 
.fixed width in which p = p,( 1 + A # ) .  The sum of the pressure, PIP,,, and the reference 
Coriolis pressure term- f ,  $ / H  on the P-plane are identical to thp sum of the pressure 
n / p ,  and the potential energy of the Jluid gyp,( 1 + A$) in the strati$pd $wid. 

This equivalence between the two systems implies that  the term PyV@/H in (2.3) 
is analogous to the term gyVp in (A 3).  Therefore, the variation of the Coriolis force 
with latitude may be interpreted as exerting a force upon variations of the transport + in an identical fashion to the force exerted by gravity upon density differences p. 
Using (A 2) we can identify a density with each streamline and thereby interpret the 
motion on a P-plane as a special class of motions in a stratified fluid. This observation 
allows a simple and intuitive interpretation of the dynamical balances operating in 
many steady flows on the P-plane. I n  a stratified fluid, density differences exert a 
buoyancy force upon the flow and these may be viewed as being decoupled from the 
motion ; on the P-plane we have shown that i t  is the variation of the streamfunction 
of the fluid which determines the 'buoyancy force' upon the flow, but the 
streamfunction is implicitly linked to  the flow. By associating a density. proportional 
to  the streamfunction, to  any flow solution on the P-plane, we may then interpret the 
flow solution as that  of a stratified fluid. 



The topographic control of planetary-scale flow 619 

A.3. Non-equatorial p-plane of variable depth 
In the more general situation, the Coriolis force associated with the background 
rotation, f o / H  varies with depth and we cannot incorporate this effect purely as an 
additional contribution to the pressure field (equation (2.3)). Therefore there is no 
exact analogy with the class of simple stratified channel flows described by (A5). 

It is of interest to note that in the shallow-water approximation for the stratified 
flow the hydrostatic pressure is (Benjamin 1981) 

whereas in the rotating flow, the pressure is given by 

P(Y) = W )  -s dY P@/H(x) - [@Y$/H(x)l: +fO(@(Y) - YW))/H(4. (A 12) 
L 

These expressions identify the equivalence between the quantity P- f o  $ (y) /H on the 
/?-plane and the sum of the hydrostatic pressure, 17, plus the potential energy gyp in 
a stratified fluid. However, it also gives the converse result that the @-plane quantity 
P(y)  - ( f ,  @ +&$)/I2 is equivalent to the pressure in a stratified fluid 17. 

A.4. The analogy and previous hydraulic theories 
Two interesting similarities between zonal planetary-scale flows and stratified 
channel flows may be noted using the analogy described above: (i) the effect of 
variations of the depth of the @-plane upon a zonal planetary-scale flow are analogous 
to variations in the width of the channel upon a stratified channel flow, and (ii) the 
effect of variations in the latitudinal position of the zonal boundary upon a zonal 
planetary-scale flow are analogous to variations in the depth upon a stratified 
channel flow. It is recognition of this analogy, and the subsequent adaption and 
application of techniques developed for stratified flow hydraulics (Benjamin 1981) 
that distinguishes this work from earlier models of the hydraulics of planetary-scale 
flows. 

As mentioned in the introduction, Armi (1989) developed a somewhat different 
model of the hydraulic control of zonal currents on a @-plane, following the work of 
Rossby (1949). The models developed in these earlier works were derived from the 
qualitative similarity with the hydraulics of a homogeneous, non-rotating channel 
flow. Rossby (1949) and Armi (1989) calculated the energy flux G of a zonal current 
(equation (2.4)). As mentioned in $2, this represents the integral of the Bernoulli 
function across the flow. Both Rossby and Armi derived expressions for G in terms 
of an unknown shape functions for the flow and a non-dimensional number, 
R ,  = um/(a’/3az)), described as the Froude/Rossby number, where a’ is a shape 
function, u, the maximum velocity in the flow and a the width of the flow. By 
assuming that the shape functions of the current do not change alongstream, both 
Rossby and Armi showed that the energy flux has a minimum value when R,, = 1. 
Armi interpreted this as the critical flow, with wider slower currents being subsonic 
and narrower faster currents being supersonic. 

By assuming that, in the absence of external forces, the energy flux remains fixed, 
that is dG/dx = 0, Armi then argued that as the background pressure field changes, 
the Rossby/Froude number of the flow changes and the flow gradually becomes 
supersonic. As an example, he considered a source-sink flow in which he proposed 
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that tJhe background pressure field would change near to  the sink, and the flow could 
become supersonic. However, he did not give any quantitative details of the change 
in pressure field due to  the sink, but simply showed that as the term representing the 
contribution of the background pressure t o  the energy flux, G, changed the flow could 
become supersonic. However, in order to  use the theory one must assume that the 
flow has a particular shape function. Armi calculated the shape functions associated 
with a number of arbitrary, but simple, flow fields; these flow fields were not 
constrained to  conserve potential vorticity along individual streamlines. 

A major advance of the present theory, described in $3, is the calculation of 
exact solutions for the streamfunction, and the demonstration that either topography 
or a variation in the boundary latitude may exert an explicit control upon the flow. 
The methodology we have developed is motivated by the analogy with continuously 
stratified channel flow described above ; in such problems the Bernoulli function 
must be conserved on each streamline (Benjamin 1981) - although in fact in $ 3  we 
used the conservation of potential vorticity on each streamline, it is possible, though 
somewhat more detailed, to rederive all our results for zonal planetary-scale flows 
using the conservation of the Bernoulli function ( $ 2 )  on each streamline. I n  the 
simpler problem in which there are one or two layers of fluid of distinct densities, a 
uniform flow may develop in each layer ; conservation of the energy flux integrated 
across the flow may then be used to calculate the flow, since the ‘shape factors’ are 
trivial. However, when the flow is not uniform, as in the present work, the 
conservation of potential vorticity or equivalently the Bernoulli function must be 
used to determine the shape of the flow. 
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